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Abstract

The Diode Pumped Alkali Laser (DPAL) is a high power, three-level laser system

that employs diode bars to optically excite an alkali metal vapor. It lases along the

D1 transition, between the two lowest energy levels, 2P 1
2

and 2S 1
2
. Higher lying energy

states are produced at higher population density via energy pooling and multiphoton

processes. Pulsed laser excitation of rubidium at approximately 1 MW/cm2 has been

studied at helium pressure up to 900 Torr. Emissions from energy states as high

as 82D suggests modest ionization, though these intensities decrease drastically at

buffer gas pressures above 250 Torr. Blue emission from the 62P → 52S 1
2

transition

and red emission from the 52D → 52P transition indicate population in these upper

states that persists at all helium pressures used in this experiment. A basic kinetic

model was created to describe the concentration at these higher lying states. Optical

trapping is severe at temperatures above 450 K. Diffusion of the rubidium is very

slow, requiring mixing times exceed 45 minutes.
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KINETICS OF HIGHER LYING RUBIDIUM STATES AFTER

PULSED EXCITATION OF THE D2 TRANSITION

IN THE PRESENCE OF HELIUM

I. Introduction and Background

1.1 Introduction

The Diode Pumped Alkali Laser (DPAL) is a relatively new laser system that

some believe may have the potential to become the next laser weapon system (15).

The benefits of a DPAL are its scalable power and is able to keep excellent beam

quality. However, there may be a few competing mechanisms to scale to higher powers,

necessary to become a weapon system. One of those may be ionization. Ionization

may limit the potential power that a DPAL is able to create or degrade efficiency

at high pump intensity. This paper will investigate the kinetics in a laser pumped

alkali and attempt to quantify the effect ionization in a pulsed DPAL laser systems. A

kinetics model is presented in Chapter II without any ionization mechanism. Chapter

?? descirbes the experimental setup used for this invesitgation; the spectroscopic

data is compared to the anayltic model in Chapter IV, and the omission of ionization

is discussed. This thesis ends with a discussion of future experiments and model

adjustments that can be done to better this investigation.

1.2 DPAL Laser

The first alkali laser demonstration occurred in 1962. Cesium vapor was excited

to the 82P 1
2

by an RF powered helium lamp, and it lased down to the 82S 1
2

with a

1



www.manaraa.com

wavelength of 7.18 µm (21). Following this demonstration, investigations into the

emissions of the alkalies were undertaken, but their use as a laser system was shelved

for many years after. This was mainly due to a lack of narrow band pump sources

to allow for efficient pumping of the alkali. (29). It wasn’t until late 2003 that a new

alkali laser system was introduced when Dr. William Krupke secured a patent for

the Diode Pumped Alkali Laser. This quasi-two level laser system utilizes the lowest

three energy states of the alkali vapor—the ground state n2S 1
2
, and the first excited

doublet n2P 1
2

and n2P 3
2
, as well as a mixture of noble gases or specific molecular

gases acting as a buffer. Technically three energy levels are used, but the higher two

are so close in energy they can be equilibrated, hence ”quasi-two level.” The vapor

is pumped along the D2 transition line, n2S 1
2
→ n2P 3

2
, then, in the presence of the

buffer gas, is collisionally relaxed to the slightly lower n2P 1
2

state. From there the

atom spontaneously relaxes to the ground state, emitting a near IR laser. Fig 1 shows

this process in rubidium. The atom is excited along the D2 transition, 780.0259 nm,

from 52S 1
2

to 52P 3
2
. Through spin-orbit mixing, the atom relaxes to the 52P 1

2
and

then lases back to the ground state along the D1 transition, 794.7596 nm (15).

Some of the fundamental qualities of the DPAL lend themselves very well to in

depth study and development. Due to the size of the spin orbit splitting–at most

555 cm−1–alkali lasers have an extremely high quantum efficiency compared to their

solid state counterparts (16). The DPAL’s quantum efficiency is over 95% , com-

pared to around 85% for Nd:YAG lasers (9) and 80% for Ti:Sapphire systems (1).

Secondly, this laser system utilizes a gaseous vapor as its gain medium, giving rise to

other promising features of the DPAL system, namely lower thermal aberrations and

easier scalability to extremely high powers. Thermal effects in solid state lasers can

cause unwanted stress on the lasing medium, leading to degradation in beam quality.

Stresses on solid state lasing media can created subtle modifications to the index of

2
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Figure 1. The three lowest levels in an alkali atom. The spin orbit relaxation occurs
only in the presence of buffer gas, as the density of alkali atoms make the spin orbit
mixing rate very low.

refraction, creating phase changes of a beam passing through and degrading the qual-

ity of the beam (8). In gas lasers, the medium can flow through the cavity reducing

this issue by cycling in cooler vapor and not allowing temperature to accumulate.

The DPAL system also has an easy way to scale up to higher powers. Power can

easily be produced in a DPAL by increasing pump intensity and carefully increasing

volume.

Both of these issues have been investigated at length. R. Beach et al. (6) have

investigated both the theoretical thermal effects and the power scaling advantages of

DPAL laser systems over their solid state counterparts. They demonstrate that the

two leading causes for thermal aberrations of the laser are thermal conductivity of the

gain medium and its refractive index’s dependence on temperature. Less thermal con-

duction means less pump power is lost through heat, and a smaller index dependence

3
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on temperature implies better beam quality. The DPAL system outperforms solid

state lasers in both of these metrics. The DPAL is 67 times less thermally conductive

than the typical solid state lasers, and has a gain medium that gets has an index

of refraction that is less temperature dependent than solid state lasers. They also

discuss a theoretical geometry for convectively cooling a flowing gas, and conclude

that the laser efficiencies would be higher with an alkali based system.

W. Krupke (16) expands on the possibility of scaling the power of the DPAL laser,

suggesting that the way forward is to pump these lasers transversely, as opposed to

longitudinally. In a longitudinal pumped geometry, the pump beam runs parallel to

the output beam, whereas in the transversely pumped scheme, the pump beams comes

perpendicular to the direction of the output beam. In static non-flowing systems, this

geometry allows for an increase in the pump power insertion area, while maintaining

reasonable temperature gradients. Using this geometry, peak laser power was more

than doubled compared to the end pumped design, 49 W from 13 W. Krupke further

discusses geometries for flowing the alkali vapor, in a triply transverse device. Here

the gas flows perpendicular to both the pump beams and the output laser. Using this

geometry a device was shown to produce power considerably higher than that of the

static non-flowing device, 130 kW in a quasi-CW output beam, when pumped with

63mJ.

Although the DPAL seems much more scalable than solid state lasers, there still

remain issues for reaching the maximum power output in these systems. At high

pump power, there is an apparent decrease in output laser power as you scale input

power. Above 70W of CW pump power, the output power falls off, dropping from 20W

output with 70W pump to 15W out at 100W pump intensity (19). Many different

theories have been posited as to explain this phenomenon.

The first of these is alkali-buffer gas chemical reactions. The buffer gas in the

4
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lasing medium is a mixture of rare gases, like helium, and specific hydrocarbons, such

as ethane or methane. The hydrocarbons have a much larger spin-mixing rate that

rare gases but undergo chemical reactions that significantly degrade laser power. A

modeling of a cesium laser, with a hydrocarbon density of 1/5 the helium density,

exhibits a 75% drop in the output power when chemical reactions are taken into

account (5). For this reason, a buffer gas consisting of pure helium is preferable, but

the spin orbit mixing cross sections is too small for this to be a practical scenario,

especially in the larger elements. A purely helium buffer works for potassium, but

the helium pressure needed to create the same stimulated emission rate in cesium is

230,000 atm (16).

The next deleterious process is thermal lensing. While the effects are not as serious

in the DPAL laser as in the solid state laser, they still exist must be considered.

Thermal lensing can occur when the index of refraction of the gain media changes

enough to cause a quarter wave distortion. This has been shown to cause distortions

in the lasing cavity, causing beam degradation at realistic temperatures. Laser decay

time falls from 4.5 ms to 0.5 ms as the cell temperature is increased from 165◦C to

200◦C (30).

The third and most intriguing challenge to scaling power in the DPAL system

is that of ionization. The first two issues seem to have simple, albeit incomplete,

solutions; rubidium can used in an all helium environment to avoid chemical reactions,

and convective flow can be utilized to mitigate the thermal aberrations—a modest

flow of 7 m/s in the direction of the pump beam has been shown to mitigate the

thermal lensing problem (30). Ionization, though, seems to occur with all of the

alkalies and a solution is not immediately apparent (13). When an alkali atom is

ionized, its electron can no longer cycle through the process necessary for lasing to

occur. If a sufficient density becomes ionized, there will less atoms available for lasing.

5
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The rates of photoionization have been shown to be significant, on the order of 103

sec
in

situations with extremely high buffer gas pressures. Theoretically it would be possible

to use a convective flow to cycle new atoms into the laser gain area to alleviate this

problem, however it would require nearly supersonic flows to remedy the situation

(13).

What makes this problem of photoionization so vexing is the fact that while the

effects have been shown experimentally (10), there is no obvious mechanism for this

process to occur. In all of the alkalies, there are no energy levels accessible with

a photon from the pump source, except the doublet P that is being purposefully

excited; and the pump photon does not have enough power to cause ionization from

that first excited state. A single pump photon can ionize an atom from a doubly

excited state, so it is likely that some mechanism is creating population at higher

energy levels.

The two leading theories in this matter are energy pooling and off-resonant exci-

tation into the wings of the absorption line shape (19). Energy pooling occurs when

two singly excited rubidium atoms collide to create a doubly excited atom and one

in the ground state, Rb∗ + Rb∗ → Rb∗∗ + Rb. Here, Rb* represents an atom with an

electron in either of the 5P states, Rb is an atom with its electron in the 5S state, and

Rb** is the doubly excited atom (12). The second mechanism involves the buffer gas

broadening the line width of a double excited, such that a pump photon can excite an

electron in the first excited doublet, or from the ground state, to this doubly excited

state with a two photon process. In both cases the the primary states excited by

this mechanism are the (n + 2)2S and the n2D states—where n is the ground state

quantum number for the specific alkali (12; 13). Recall, for rubidium the 52S state is

the ground state, so the 72S and 52D states are the primary states created by these

two mechanisms.

6
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There exists mechanisms of ionization other than single photon photoionization

preciously discussed. Just as a two photon process can create a doubly excited atom,

two photon processes can create an ion from a singly excited alkali atom (4). Penning

ionization can occur when, similar to energy pooling, an excited alkali atom collides

with another to impart energy. This time, though, a singly excited atom collides with

a doubly excited atom, creating a ground state atom, an ion, and a free electron. The

other mechanism is associative ionization processes, in which two singly excited atoms

collide and bond, creating an excited alkali dimer and a free electron (17).

There is some evidence that ionization may not have that serious of an effect

the DPAL. Sulham et. al found linear scaling of the DPAL up to 32 times the

threshold value, 43 kW/cm2 pump intensity, in pulsed experiments. They were able

to scale up the DPAL without seeing these secondary effects (23). Hurd et. al

found that secondary mechanisms, including ionization, only had a minor effect for

a potassium laser pumped by pulses with 7 MW/cm2 (11). It could be that the

mechanisms for producing ions are not fast enough processes or that at the high buffer

gas pressures that are required, the recombination rate is such that any ion that is

produced will immediately recapture an electron and re-enter the DPAL cycle. The

general disagreement in the scientific community makes this problem more interesting

and this research more important.

There are a few other complications that must be identified with this laser. The

first of which is the possibility of creating stimulated emission at unexpected wave-

lengths, through two-photon absorption. It has been shown that through a two

photon process, a ground state electron can be excited to a highly excited D state.

The photon then can lase in the infrared down to a neighboring P state, and lases

again in the blue back down to the ground state. In rubidium, the ground state elec-

tron, in 52S 1
2

is excited using a pump beam at 778.1 nm to the 52D 3
2

state. It then

7
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lases at around 3 µm to the 6P manifold, where it lases again to the ground state

at 420.2 nm (24). Note that the traditional rubidium DPAL laser lases from the 5P

manifold. Care is needed to not accidentally excite this two-photon process, because

two pump wavelengths differ by less than 2 nm. Ionization is much more accessible

at this higher energy level.

The other major difficulty of making a DPAL is a phenomenon called radiation

trapping. This occurs when radiation is emitted by an atom and that radiation is

reabsorbed by another atom before it can reach the detector. This cycle of emission

and reasorption can occur many times over the path from the original emission to

reaching the detector. The effect of this trapping will be a perceived increase in the

observed lifetime of a state (28). The magnitude of this phenomenon are a function

of a few variables, including number density of the lower state, absorption cross

section (and therefore line shape) and experimental geometry. Molisch and Oehry go

into fantastic detail in (18), and conclude the normalized eigenmodes of the Holstein

equation analytically solve this problem. Such detail is not taken presently, but it

must be considered during any analysis.

8
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Figure 2. The Grotian energy diagram for Rubidium. There exist many more dipole
allowed transitions in both the UV and IR spectrum, but this paper will focus only on
the primary visible and NIR transitions, here represented by the dotted lines.

1.3 Rubidium

All of these issues are valid for the alkalies. This investigation focuses solely on

rubidium. In this case the ground state is the 52S 1
2

and is pumped along the D2 line

centered at 780.0268 nm to the 52P doublet, and lases along the D1 line centered

at 794.7603 nm (14). Figure 2 shows the different energy levels of rubidium. The

D2 pump line the solid line, the most prominent transitions in the visible and near

infrared spectrum are shown in dotted, and other major dipole allowed transitions

are represented by the dashed lines.

The transitions monitored in this experiment are annotated in Table 1. The first

9
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column is the vacuum wavelength of the emitted light. The second column is the

atomic transition that emits the specific photon, written as the lower state level nlj,

then the upper state (14). The last two columns are Einstein A coefficients for the

transition; if it is available in the National Institute of Standards and Technology

(NIST) Atomic Spectra Database, it is quoted in the third column. The final column

is an analytic estimation of the A coefficient found using a hydrogenic approximation

(20). As a note, for all the analysis done, the NIST database A coefficient was used

when it existed, for all others, the Payling number was used.

The model that is created in the next section examines the primary doubly ex-

cited states and suggests a method for creation of them based on some mechanisms

identified in this Chapter, specifically energy pooling. This model can be compared

to spectroscopic intensities of the tranisition lines from Table 1 and an estimation of

the model’s validity can be made.

10
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Table 1. Rubidium atomic transitions. If a transition has no A-coefficient quoted in
the NIST database, the entry will be blank.

λ (in nm) Transitions (Lower, Upper) NIST (in 108 sec−1) Payling (in 108 sec−1)

358.7050 5S 1
2
, 7P 3

2
0.0040 0.0040

359.1572 5S 1
2
, 7P 1

2
0.0029 0.0029

420.1788 5S 1
2
, 6P 3

2
0.0177 0.0180

421.5519 5S 1
2
, 6P 3

2
0.0150 0.0150

564.7761 5P 1
2
, 7D 3

2
0.0150

572.4106 5P 3
2
, 7D 5

2
0.0190

607.0746 5P 1
2
, 8S 1

2
0.0086

615.9619 5P 3
2
, 8S 1

2
0.0160

620.6305 5P 1
2
, 6D 3

2
0.0295 0.0250

629.8324 5P 3
2
, 6D 5

2
0.0371 0.0310

727.9989 5P 1
2
, 7S 1

2
0.0180

740.8166 5P 3
2
, 7S 1

2
0.0350

761.8925 5P 1
2
, 5D 3

2
0.0410

775.7647 5P 3
2
, 5D 5

2
0.0530

780.0259 5S 1
2
, 5P 3

2
0.3861 0.3700

794.7596 5S 1
2
, 5P 1

2
0.3610 0.3400
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II. Model

This chapter will outline a simplified model that can be used to describe the

kinetics of the DPAL system. It is not presented as a complete model that accounts

for all of the possible mechanisms occurring in rubidium, it is simply one possibility.

The mechanisms chosen are believed to be the dominant mechanisms in this process.

But ionization is purposefully neglected. If this model is able to correctly predict the

data, then it suggests that ionization may not be a major factor in the kinetics. If

the model is insufficient, though, then ionization remains a possiblity.

This model requires a few major assumptions. First, it is assumed that the pump

intensity is much greater than the saturation intensity all the way through the cell.

This is a fair assumption as the pump intensity being used is approximately 106 times

that of the saturation intensity, so the D2 transition is bleached for the entire laser

line. The next assumption is that the radiation trapping acts solely by decreasing

the A coefficient, effectively increasing the decay rate. The trapping factor can be

described as a probability that a given photon will be able to escape the cell, and it

is modelled as function that goes from 0 to 1 and is dependent on rubidium number

density and buffer gas number density only. Radiation trapping’s dependence on the

buffer gas manifests itself through the line shape and therefore the absorption corr-

section. All other dependencies are neglected, including geometry, as they remain

constant through the experiment.

The third assumption is the total population of rubidium atoms are in the ground

state and the first excited manifold, the 52P 3
2

and 52P 1
2

states. This is a valid as-

sumption as the data will reveal later in Chapter IV. The density in states excited

above the 52P states is two or three orders of magnitude less than the density in those

states, so we can neglect them in the total rubidium density. Furthermore, the only

other states that have any contribution to the overall density are the 62P and 52D
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manifolds. These two are the only states not included in the lasing process that emit

enough light to be seen in experimental results under all conditions. The final as-

sumption is a bit more difficult. It is assumed that there exists no radial dependence

on the output of the rubidium sample, that is to say everywhere in the pump beam

is pumped equally. This is done to simplify some of the calculations; attempting to

account for this would be mathematically difficult. Everywhere in the pump spot

does not have the same power though; there exists some distance from the center of

the spot where the pump power has fallen past the saturation intensity. At this point

the excited rubidium density will drop significantly. To counter this, much of the

experimentation is done at approximately the same pump power, near 8 MW/cm2,

so that the bleached volume stays relatively constant and the effects of this density

gradient will be the same over all of the runs. This does not solve the problem, but

does allow for the effects to be negated as they should remain constant during the

course of the experiments.

The only kinetic reactions considered in the model are laser pumping, spin orbit

mixing, energy pooling, spontaneous emission and quenching. They represent the

main processes of energy transfer in the cell and will hopefully be able to correctly

predict the data. The first process is the excitation of the rubidium along the D2

resonance transition by the pump laser:

N0 + hνp → N2 (1)

Here, N0 is a rubidium atom in the ground state, N2 is one in the 52P 3
2

state, and

hνp describes a pump photon at 780.0 nm. The next reaction is the spin orbit mixing

of the 52P manifold with the buffer gas:

N2 +He
k21,12↔ N1 +He (2)

13
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Now N1 and M are introduced; N1 is a rubidium atom in the slightly lower 52P 1
2

level

and M is a atom of the buffer gas, in this case helium. The rate coefficients k21 and

k12 are the forward and backward fine structure mixing of Eq. 2, respectively. The

next reaction is the energy pooling of singly excited atoms to a doubly excited one:

N1,2 +N1,2
kp3,p4→ N3,4 +N0 (3)

On the left side of Eq. 3, N1,2 refers to either an electron in the 52P 3
2

or 52P 1
2

states. This model does not make a distinction between the two singly excited states

concerning pooling. This is not technically correct, as the different spin-orbit splitting

does result in different pooling rates (12), but the values are close enough to be

assumed equal for this work. On the right side of that equation, N3,4 refers to either

a rubidium atom with an excited electron in the 52D manifold, or the 62P manifold,

respectively. Due to the distribution of the excitation, both states in the manifold

will be included. The rate at which these reactions occur will be kp3 and kp4, with

kp3 referring to the 5D process and kp4 referring to the other. These first processes

are the primary mechanisms for creation of the excited atoms, the next equations will

describe the relaxation. The first of these is spontaneous emission.

Ni → Nj + hνij (4)

In this equation, Ni can refer to any of the four excited states, acting as the upper

state in the transition, and Nj will be the lower state and can be either the ground

state or the 5P manifold (i.e. j = 0, 1, 2). Also, hνij is the photon emitted at the

wavelength corresponding to the transition. The rate at which these reactions occur is

the A-cofficeint associated with the transition, in 1
sec

. The final process is quenching.

Recall, in this process, an excited electron is collisionally relaxed to a lower energy

14
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manifold.

N3,4 +He
kq3,q4→ Nj +He (5)

The Nj in this equation refers to any other energy state lower in energy than the

initial state. So from the 62P manifold, the electron can be quenched to the ground

or the 52P state, but not the 5D. From the 52D state, though, it can quench to any

of the states that have been discussed thus far. The rates that these processes occur

will be kq3 and kq4, again referring to the process of N3 and N4 respectively.

Using these processes, rate equations can be derived. For the rest of the analysis,

nj will be the number density of the the jth state, and m will be the helium density,

[He]. The states will be denoted similarly to the process equations, where n0 is the

ground state density, n1 is the density in 52P 1
2
, n2 is the density in 52P 3

2
, n3 is from

the total 52D manifold, both 52D 5
2

and 52D32, and n4 is the density in the entire 62P

manifold, both the 62P 3
2

and 62P 1
2
. The un-sub-scripted variable n will be the total

rubidium density.

To start, the rate equation for the D2 transition is writted:

dn2

dt
=
σ02
hνp

Ip(n0 −
1

2
n2)− ξ2A2n2 − k21mn2 + k12mn1 (6)

where σ02 is the absorption cross section of this transition, Ip is the intensity of

the pump beam and ξ2 is the resonance trapping of the D2 transition. The symbol

ξ represents the radiation trapping factor, and the subscript associated with the

the symbol will represent the states as described above. The terms relating to the

processes that are not included in this rate equation, specifically the pooling and the

quenching are able to be neglected because of the first major assumption that was

made. The number densities in the higher excited states are negligible to the those in
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the lower excited states, so the contribution to and removal of n2 due to the creation

and destruction of those states must be negligible.

The first term in Eq. 6 is known as the pump rate:

Rp =
σ02
hνp

Ip(n0 −
1

2
n2) =

Ip
Is
A2(n0 −

1

2
n2)

where Is = hνpA2

σ02
is the saturation intensity of the sample. This must be a finite rate,

and because we assumed that the entire cell was bleached, IP >> Is, it is required

that n0 − 1
2
n2 → 0, or

2n0 = n2 (7)

The other term in Eq. 6 that requires more thought is the trapping factor. The only

requirement that must be met is that it be a function that ranges from 0 to 1–with 0

being the most trapped–and goes down as n goes up. If there was minimal rubidium

in the cell, there would be no trapping, and ξ = 1. A pragmatic, but not theoretically

supported, functional form for trapping is proposed:

ξ =
1

(1 + bn)k
(8)

The constants b and k may be functions of absorption cross section, so they can be

variable for different transitions and buffer gas pressure. This will be discussed in

much more depth in Chapter IV of this thesis.

Turning back to Eq. 6, to investigate the value of n2, a steady state solution must

be found. To achieve this, the function is integrated over all time, which is equivalent

to setting the time rate of change equal to 0 (For a secondary discussion of this step,

considering the Boltzmann equation, see Appendix B). Setting Eq. 6 equal to 0, and

invoking an assumption from above, such that n = n0 + n1 + n2:
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Ip
Is
A2(n− n1 − 3/2n2) + k12mn1 = (ξ2A2 + k21m)n2 (9)

In order to solve for n2 solely as a function of n, the rate equation for n1 must be

examined, it is written:

dn1

dt
= k21mn2 − k12mn1 − ξ1A1n1 = 0 (10)

n1 =
k21m

k12m+ ξ1A1

n2 = γn2 (11)

where γ is the parameters in front of n2 in Eq. 11, specifically γ = k21m
k12m+ξ1A1

. Plugging

this value back into Eq. 9:

n2

n
=

Ip
IS
A2

Ip
Is
A2(

3
2

+ γ) + (ξ2A2 + k21m− k12mγ)
(12)

Because Ip
Is
>> 1 Eqs. 10 and 12 can be simplified to:

n2 =
1

3
2

+ γ
n (13)

n1 =
1

1 + 3
2
1
γ

n (14)

Obviously, as a function of total rubidium density, in the absence of any trapping, you

would expect the excited state density to increase as well, which is what the model

predicts. The effect of trapping is less obvious and will be discussed later. The helium

dependence of these can be easily seen in γ. As a function of helium density, γ starts

very close to 0 and rises approximately to 1. So at m = 0, n2 = 2
3
n and n1 = 0. In

the context of the model, this works perfectly. There is no way to create n1 without

helium. Then in both cases, as helium density increases, the density in each excited

state grows until the two states have near the same density, n1 ≈ n2 ≈ 2
5n
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Similar analysis needs to be done for the two doubly excited states as well. For

the density in the 52D doublet, n3:

dn3

dt
= kp3(n1 + n2)

2 − kq3mn3 − ξ3A3n3 = 0 (15)

n3 =
kp3(1− 1

2γ−3
)2

kq3m+ ξ3A3

n2 (16)

The values for n1 and n2 were taken from Eqs. 13 and 14. A quick analysis of these

equations show that n3, as a function of helium density, may initially rise, as γ’s

intial increase will drive the function up. This may not last long, though, as the m

dependence in the denominator will become dominant and begin to pull the density

back down. The magnitude of the initial increase though is dependent on the value

of the quenching rate.

The last density is that in the 62D doublet, n4, and its rate equation is:

dn4

dt
= kq3n3m+ kp4(n1 + n2)

2 − (ξ4A4 + kq4m)n4 = 0 (17)

n4 = (
kq3kp3m

(kq3m+ ξ3A3)(kq4m+ ξ4A4)
+

kp4
kq4m+ ξ4A4

)(1− 1

2γ + 3
)2n2 (18)

It is much more difficult to understand helium’s dependence on this state simply by

inspection. To simplify this, the term consisting of kp4 might be neglected. The

process of energy pooling to the 52D state is a much faster process than the pooling

to the 62P state, so kp3 >> kp4. In spectroscopy it is known that the transition

52P → 62P is not an electric dipole allowed transition. This is because the matrix

element associated with the electric dipole operator is 0. If the operator that dictates

the energy pooling process looks like the dipole operator –i.e. goes like r̂– then it too

will not be an energy pooling allowed transition. Furthermore, energy pooling rates

have been calculated in cesium and it has been shown that kp3 is nearly two orders
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of magnitude greater than kp4 (12).

With this simplification, the behavior of the density in the 62P states as a function

of helium is a bit simpler. The same γ factor is in this equation as in 16, so you would

again expect an initial increase of density. However, unlike in 16, there is an m in the

numerator as well. It has the functional form x
(x+1)2

, which has an initial rise until

the (x + 1)2 in the denominator overtakes the x in the numerator. So it seems that

the density in 62P will demonstrate a much larger rise and continue rising for longer,

before it turns and begins to decrease as the helium pressure grows.

The final model is present below. Due to scattered pump light, it is impossible

to compare the density of n2 to the data. However, the other states can easily be

compared to spectroscopic data, and they are in a future chapter.

n1 =
1

1 + 3
2
1
γ

n

n2 =
1

3
2

+ γ
n

n3 =
kp3(1− 1

2γ−3
)2

kq3m+ ξ3A3

n2

n4 = (
kq3kp3m

(kq4m+ ξ3A3)(kq4m+ ξ4A4)
+

kp4
kq4m+ ξ4A4

)(1− 1

2γ + 3
)2n2
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III. Experimental Apparatus

Flouresence of rubidium vapor excited along the D2 transition by a pulsed dye

laser is examined to obtain relative concentration of different energy levels. The

experimentation was done in a custom Pyrex cell. The Pyrex cell was heated to

temperatures between 195◦C and 235◦C. The rubidium was heated in a custom alu-

minium heater block, with a Watlow DUAL-ARGR-1300 controller using 10 Watlow

C1J6-L12H heater plugs, monitored by a K-type thermocouple. The rubidium den-

sity in the cell at these temperatures was then found using vapor pressure curves (2).

At these temperatures, the rubidium denisty in the cell is n = 1014 − 1015 1
cm3 . The

rubidium itself came from Alfa Aesar and has a 99.75% purity, with caesium as the

leading contaminant. The pump laser consisted of a Coninuum Surelite 3 ND:Yag

doubled to 532nm pumping a Continuum ND 6000 tunable dye laser with Exiton LDS

765 dye. The pump laser had an average output power of around 25 mJ per pulse

with a nearly circular spot size with a radius of approximately 0.3 cm. The laser had

a rep rate of 10 Hz and a pulse that last around 10ns. This corresponds to intensity of

8.85 MW
cm2 . Helium was injected through an arm on the top of the cell, coming through

a system of Swagelok and Ultra-Torr fittings. The maximum helium pressure the cell

could withstand is near 1200 torr; pressure was kept below 1000 torr as to not exceed

the limits of the Ultratorr fitting. An MKS Type 670 Signal Conditioner was used

to monitor Helium pressure in the cell. The Helium was 99.999% pure from Weiler

Welding Company. The system had a total leak rate of ¡.002 Torr/sec.

The florescence was captured using an Acton SpectraPro 275 spectrometer with a

Princeton Instruments, PI-MAX 2 CCD camera attached, being viewed from the side

as shown in Fig. 3. Initial attempts were made to view the cell transversely but the

scattered pump intensity made it impossible to capture any of the other, less intense

lines. The detector had a spectral resolution of 0.031 nm over the range of 275-925 nm.
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Figure 3. Block Diagram of the apparatus used in this experiment. The florescence
was viewed from the side made capture of many transitions possible. Space limitations
caused the seemingly unnecessary florescence reflection

Exposure time of the spectrometer was between 200-400 ms, and was only modulated

in 100 ms increments. This ensured that multiple pulses were captured. Futhermore,

if it is assumed that the pulses are equally spaced, by increasing exposure time in

steps of 100 ms, it can be assured that an equal number of pulses are captured in

each exposure. AS long as the exposure time is constant over a given data collection,

there is no possibility of capturing different numbers of pulses. The PI-MAX Camera

has an aperture approximately 30 nm across, scans were taken every 25 nm, starting

at a center wavelength of 300 nm to a center wavelength of 900 nm, covering the

effective range of the spectrometer. The Acton spectrometer had two gratings, each

with 1200 grooves/mm, one with a blaze wavelength of 300 nm and the other with a

blaze wavelength of 750 nm. The grating switch took place at a center wavelength of

575 nm and was carried out for every run-through to keep consistency between runs.

The background noise was near 500 counts and all signals required a peak above 2

times the noise to be recorded. The system was calibrated for intensity first using a

quartz halogen lamp and then a black body emitter, for a more in depth analysis on

the calibration see Appendix A.
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IV. Results

4.1 Ionization

A sample spectra is shown in Fig. 4 and Fig. 5. The largest peak is at 780

nm, the D2 transition. Some of its intensity though comes from the scattering of the

pump beam. The figured has been zoomed, and the D2 and D1 transition’s peak

magnitudes have been clipped to show more details of the smaller peaks. The D2’s

true peak height is approximately 5 ∗ 1011 photons and the other has a magnitude

near 2 ∗ 1011. The next highest peak occurs near 795 nm, this is the D1 transition.

These two peaks make up the entire DPAL process. The only other peaks that are

expected from the model are the ones at 420 nm, 421 nm, 761 nm, and 775 nm. The

peak intensities of the lines are calculated as an estimate of the area under the peak.

Figure 4. Sample Spectra of the rubidium laser induced flourescence. This spectra
was recorded with no added helium and a cell temperature of 225◦C. This spectra
has already taken into account detector response, the units on the y-axis are relative
spectral intensities.

The numerous other peaks present indicate a phenomenon not yet accounted for
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Figure 5. Zoomed in veiw of some of the spectral lines above. (a) The D1 and D2

transmission lines, in 1011 counts. Some fraction of the 780 nm line may be scattered
pump laser though. (b) These lines stem from the 62P states, in 109 counts, and
represent n4. (c) The population n3 can be derived from these two red lines and have
the 52D state the initial state, here in 1010 counts. (d) Some of the minor transitions
observed, in 1010 count. Their intensity falls away quickly as buffer gas is added.

in the presented model. They were neglected in the model because their intensities

are theoretically much smaller than those of the major transitions. These minor

transitions probably suggest that ionization is in fact occurring. The recombination

of the rubidium ion with a free electron is the primary mechanism for creating these

highly excited states. Most of the minor transitions are either D → P and P ↔ S

(26). While population in higher S states can be created by collisional energy transfer

(22), it is much more likely that electron recombination is the source for this excited

population. In Fig. 6 the helium dependency of the minor transitions, at 235◦C, is

shown. At its most intense, the densities in all of these minor energy states is only

10% of the population in the lower lying states. Relative concentration of the 62P and

52D states have a nonzero asymptote; however the population in the higher excited

states falls to zero before 400 torr of helium. This seems to suggest that in pulsed

experiments the effects of ionization are negligible for higher buffer gas pressures.
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The DPAL is often run with buffer gas pressures above 400 torr (16), so this evidence

shows that ionization may not be an issue for pulsed DPALs.

Figure 6. The densities of the highest excited states vs helium density. The density
in the highest exctied states, all of those higher than the 5D doublet, disappears into
the noise fairly soon. The other two states reach an asymptotic limit greater than
zero. The implication is ionization seems to fall away completely at higher buffer gas
pressures.

Additionally, no spectral lines were observed from the rubidium ion. There exist

hundreds of lines in the visible spectrum from electron transitions for Rb+ but none

were observed. It is true that the first excited state in the rubidium ion may be

difficult to reach, with an energy over 130,000 cm−1, compared to the approximately

13,000 cm−1 of the lowest level of the rubidium atom (14). However, if the degree

of ionization was high enough, free electrons could accrue enough energy to populate

these extreme states. Their absence may be additional evidence that ionization is not

a major mechanism in this process. Spectral lines from the rubidium ion were observed

when pumping along the two photon process decribed in (24). The 52S 1
2
→ 52D 3

2

transition, for instance, is identified at 424.4 nm. This seems to implicate that the

ionizational effect is much greater in that experiment.
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Fig. 7 shows the decrease of highly excited rubidium density at different cell

temperatures, and therefore total rubidium density. This clearly shows that the buffer

gas pressure needed to completely quench these transitions is directly proportional

to the total rubidium density. An optimized power-scaled DPAL has been shown to

require cell temperatures of under 140◦C (6). This too implies ionization may not be

an issue in real DPAL applications.

Figure 7. The densities of the highest excited states vs Helium density at different
temperatures. The • represents taken collect at a cell temp of 235◦C. The ◦ is at
225◦C, × is 215◦C, � is for 205◦C, and the 4 is for 195◦C. As the total Rubidium
density increases, the Helium pressure necessary to quench all of the tranistions from
the highest energy levels increases as well.

4.2 Model Analysis

The model constructed in Chapter II was fit to the experimental data collected.

The first step to fitting the model was to find a functional form for the trapping

factor. With the only condition on the functional form of the trapping factor being

that it is a decreasing function bounded above by 1 and below by 0, there were many
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possible options that fit. A simple form that fit well, with only two parameters, was

ξ ∝ 1
(1+bn)k

. This allowed for greater control of the rate of decay. To experimentally

determine the values for b and k, the intensity of the D1 line was monitored as a

function of rubidium density, at a high value of buffer gas. From the model, it can

be seen that, given M >> 1, then the density in the 52P 1
2

goes like n1 = 2
5
n. Using

this and the experimental data,

I1
A1D1

= Daξ1
2

5
n (19)

where I1 is the intensity of the D1 line, D1 the relative detector response at 795 nm,

andDa is the absolute detector response. The relative detector response is the fraction

of a known photon input that registers a count on the detector and is different for

every wavelength. On the other hand, the absolute detector response is a function of

the geometric set up and relates the number of photons theoretically emitted to the

number of photons that reach the detector. Fig. 8 shows the fitting of Eq. 19 to the

D1 line intensities, as a function of total rubidium density, at 549.9 Torr of helium.

The decrease of apparent population demonstrates the effect of radiation trapping.

Even though the 52P 1
2

is increasing, the increase in total population is causing a

decrease in the rate of photon escape. The general shape of the curve gives the form

of radiation trapping, and the amplitude sets the value for the absolute detectivity

of this set-up.

Now that the parameters in the model are set, an attempt to match the helium

dependence of D1 with the data is attempted. The dots in Fig. 9 represent the data.

The blue dashed line represents Eq. 14 with the parameters as were just derived.

It seems that the model is not a very good fit. However, corrections can be made

to better predict the data, and the red and green lines represent the model as these

improvements are made. The first major flaw is the general shape of the fitted line, it
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Figure 8. The intensity of the D1 transition as a function of Rubidium Density. The
expected rise in D1 intensity due to the increase in Rubidium is subverted due to the
density dependence in the trapping. The fit equation looks like I = .0067

(1+9∗10−16n)3.52 .

approaches its asymptotic limit much too quickly. This inaccuracy can be attributed

to an apparent decrease of the total rubidium density. This error comes from two

different sources. First of all, the initial values used for the total rubidium density

are taken from the vapor pressure curve from (2). This assumes the cell is heated

uniformly to the temperature registered by the thermocouple. In truth, the average

temperature is some number slightly less than that, so it serves a upper bound.

The more important issue, though, is what will be referred to as the diffusivity

problem. The solid rubidium is kept in a small off-chute of the cell below the main

chamber, where the pump laser goes through. When helium is added from the top of

the cell, its much greater pressure forces the gaseous rubidium down into this bottom

finger. It then takes a significant amount of time for the rubidium to work its way

back into the main cell. In this time the true rubidium density actually in the pump’s

path is significantly depleted. Fig. 10 shows that it takes nearly 45 minutes for the

rubidium density in the cell to equilibrate, and any data taken before that time will
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Figure 9. The intensity of the D1 transition as a function of Helium Density. The blue
lines represents the initial prediction of the model. The red line shows the prediction
becoming marginally better when diffusivity is corrected for. The model predicts the
data very well when the laser degradation is fixed, shown here in green.

suffer from a much lower density. Unfortunately, this diffusivity issue was identified

well after the main data was taken and the data was captured before the cell was able

to come back to equilibrium. This diffusivity issue can be expressed in the model

by changing the true density to some much smaller value, napp. This modification

allows us to slightly change the shape to correct the growth rate. It was found that

napp ≈ .2778ntrue. That is not to say that it is believed that the rubidium densities

presented in Fig. 8 are absolutely correct, but due to experimental methods, they are

believed to be much closer to the true values. This change of the model moved the

prediction to the red dotted line in Fig. 9.

This first correction has not completely solved the problem, though, as the magni-

tude is still incorrect. The primary reason for this can be attributed to a degradation

in laser power. One of the initial assumptions made was that there was no radial de-

pendence on the fluorescence inside the cell. If this were true, then once the rubidium

is bleached all the way through the cell, adding more pump power would not cause
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Figure 10. The intensity of the D1 transition as a function of time after buffer gas
addition. It appears that it takes nearly 45 minutes for the gas in the cell to reach
a stable density. Data taken before that time will be subject to inaccurate density
measurements.

additional rise in transition intensity. This, however, is seen to be not true. Even

though the rubidium is bleached the entire length of the cell–the pump intensity is

106 times that of the saturation intensity, the intensity of the D1 transition grows

with pump laser power, as seen in Fig. 11. Fig. 11 also shows that the intensity for

the other transitions also grows, and it grows with a similar rate as the D1 transition.

The fact that all three transitions grow linearly implies that this may be due to the to

an increase in the radius of bleached rubidium in the pump beam. If it were true that

the cell was not bleached all the way along its transverse axis, then this increase in

laser power would create a linear rise in the D1 line, but the other transitions should

have a different shape. Eq. 16 shows that the 760 nm line would grow quadratically

compared to the D1 transition. This phenomenon was discussed in Chapter II.

The data shown in Fig. 8 and 9 was taken nearly a month apart. In this time,

the laser dye being used to tune the pump laser began to become exhausted. The
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Figure 11. The pump beam intensity vs. the normalized transition intensity. The
dots represent the 795 nm line, the plus signs are for the 420 nm line, and the squares
represent the 761 nm transition. All the monitored transitions’ intensity rises linearly
with respect to pump power. This can only be caused by an increase of the radius of
the bleached volume.

effectiveness of the dye reduces over its working lifetime and pump intensity was

nearly halved in that time, from approximately 35 mJ per pulse of pump intensity

to under 20 mJ. While the rubidium was still bleached at the lower pump power, the

decrease in bleached area could cause the amplitude discrepancy that is being seen.

The amplitude of the predicted line is adjusted to a higher value account for this

degradation. The final correction is shown as the green dashed/dotted line in Fig. 9.

A similar process is undertaken to fit the model to data of the 761 line. The

functional form of the trapping for this transition has a simliar functional form as

was selected before. It is given as ξ3 = (1 + bn)−3.52. It is posited that the value of

the exponent must be constant over all transitions, as the form of trapping should

be the same, but the value of the parameter b can be variant between transitions, as

it encompasses the absorption cross section and that will change for each transition.

From Eq. 16, at large values of buffer gas, the intensity of the 761 nm transition goes
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as:

I761
D3A761

= .267 ∗ Da(1 + bn)−3.52n2 kp3(
4
5
)2

kq3m+ A3(1 + bn)−3.52
(20)

An important distinction must be made between A761 and A3. A761 is an estimated A-

coefficient for the transition 52D 3
2
→ 52P 1

2
whose responsible for the 761nm line. A3

is the sum of all A-coefficients with 5D manifold as the upper state. It comes from the

total radiative lifetime of the state, found experimentally in (25). The value of pooling

cross section of this energy level is taken from (27) and the rate constant is found to

be kp3 = 5.9199 ∗ 10−10cm3sec−1. The constant in front of Da is an approximation of

how much of n3 would emit along the 761 nm transition. It takes into account the

degeneracies of the 52D manifold, as well as the proportion of photons emitted along

at this wavelength, as opposed to those along the 52D 3
2
→ 52P 3

2
transition.

Figure 12. Apparent density in the 5D states as a function of rubidium. The helium
pressure was held constant at approximately 700 Torr. Eq. 20 is fit in the high helium
denisty limit and the functional form of the trapping factor is set with this plot. The
trapping constant, b, is changed though to account for absorbance differences.

Eq. 20 is fit to the experimental data in Fig. 12. The trapping seems to be

much less for this transition though it still rises initially as total density is increased.

31



www.manaraa.com

The reduced trapping of this transition is to be expected, as the population of atoms

that could reabsorb this photon (ones in the 52P 1
2
) is much less than those in the

ground state. It is true that in the pump laser path, the population in the 52P 1
2

is

higher than that in the ground state, in the rest of the volume of the cell the excited

population is much lower than that in the ground state. The functional form of the

trapping factor fits this data as well, so it verifies the functional form chosen. The

only value left to determine from Eq. 16 was kq3. Eq. 16 is fit to experimental data

in Fig. 13. The model does a very poor job of correctly predicting the data, the

asymptotic limit is close but the amplitudes near 0 buffer gas is much too high. The

shape though has similar features, the prediction initially rises with helium before

quickly falling, just like the data. The estimated value for the quenching of this state

is kq3 = 1.34± .9 ∗ 10−13cm3/sec

Figure 13. Density in the 5D states as a function of Helium. The model created in Ch.
II is compared to the actual data. Many mechanisms were neglected in the creation of
the model and it seems like at least one addition is required.

It may be that either diffusivity or laser degradation is causing this inconsistency,

but it seems like there is a much bigger issue at play here. Before possible modifica-
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tions to the model are introduced, the final fitting of the data should be completed.

Keeping the same functional form for the trapping, the model is first fit when M >> 1

to find an estimate for the quenching rate for these excited states. For this state we

want to look at the entire manifold:

I420
D420A420

+
I421

D421A421

= Da(1 + b4n)−3.52n2(
4

5
)2

kp3
kq4m

(21)

Again, it is allowed for the value of the parameter b4 in the trapping to be different

from that of the other transitions due to differences in absorbance. It will be re-

quired though that the trapping for both of these transitions to be the same, as their

wavelengths are so similar. The A-coefficients used here are transition specific, and

a difference must be noted between those and A4 which will come up shortly and is

A4 = A420 +A421. Eq. 21 is fit to experimental data with a helium pressure of 549.9

Torr and a value for kq4 is determined, in Fig. 14. The trapping seems to be at a rate

in between the two previous transitions.

Figure 14. Apparent density in the 6P states as a function of Rubidium. The same
functional form of trapping is utilized, again with slightly a different b parameter.
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Using these fit parameters with Eq. 18, the model is completed, in Fig. 15.

The same issue is seen in the 6P manifold as in the 5D. The model’s magnitude is

much to high, expecially at low buffer gas densities. The evidence points to a major

mechanism being left out of the model. Recall, the model presented is one possibility.

Possible corrections to this model can found below.

Figure 15. Density in the 6P states as a function of Helium. The model created in
Ch. II is compared to the actual data. This has the same over estimation of density
that is seen in the 5D model, and requires additional mechanisms in the model.

4.3 Model Corrections

While this model fits the experimental data relatively well for the D1 transition,

there still exists some major disparities in the other transitions. The denisty predicted

is much to high at low helium densities, as seen in Fig. 13 and 16. The size of this

incongruity implies that the model itself is missing something. And, due to the closer

agreement of the graph at high helium densities, it can be assumed that this missing

mechanism is not a function of buffer gas density. The first thought is ionization. As

shown in section 4.1, at low helium pressures, ionization is an important mechanism
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in the physics in the photoluminescence. And yet it is not incorporated into the

model in any way. This seemingly would work to as a correction. It would only affect

the higher excited states, so the model of the D1 transition would be unchanged,

but the others would have a new term in the denominator of each of its densities.

Furthermore, at high helium densities, any term that is a function of helium would

dominate and lessen the effects of ionization, bringing the density down more when

helium is small.

A simple process of photoionization can be added to the model. This mechanism

can be written as:

N3,4 + hν
kI3,I4→ Rb+ + e− (22)

Here kI3,I4 are the ionizaiton rate of the 52D and 62P manifolds, given by kIi =

σIiIP
hν

where σIi is the ionization cross section of the excited states, Ip is the pump

intensity andhν is the energy in a pump photon. The equation for the 52P1/2 remains

unchanged when ionizaiton is added, however the other two look a bit different:

n3 =
kp3(1− 1

2γ+3
)2

kq4m+ kI3 + ξ3A3

n2 (23)

n4 = (
kq3kp3m

(kq3m+ kI3 + ξ3A3)(kq4m+ kI4 + ξ4A4)
+

kp4
kq4m+ +kI4 + ξ4A4

)(1− 1

2γ + 3
)2n2

(24)

Fig 16 demonstrates the power of this additional mechanism. The blue solid line

is the same fit from Fig. 13. The red dashed line a fit with ionization added. This

perturbation lowers the modelled density by nearly half in the low buffer gas region,

while staying close in the high buffer limit. The quoted value for the ionization cross

section of the 62P manifold in rubidium excited by a 694 nm pump laser is around
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1.5∗10−17cm2 (3). Fitting the data with a 795 nm pump laser sets the ionization cross

section of the 52D manifold to 7.2∗10−18cm2. There is obviously still a piece missing

form this picture, as the model still over predicts the data. While it seems that

ionization does make the model better, there are still issues. The possible problems,

both experimental and analytic, will be discussed in the following chapter.

Figure 16. Addition of ionization to the presented model. The solid line represents the
original model adn the dashed line represents the model with the ionization correction.
It seems like this improves the model but does not entirely correct it. This implies
that an additional mechanism is necessary.

Another possible mechanism that would lower the density of the highly excited

states is self-quenching. In the same way that collisions with buffer gas can cause a

relaxation to lower energy, so to would collisions with itself. As you increase helium

density the relative magnitude of this self quenching term compared to the buffer gas

quenching would become negligible, but near vacuum, it could be a way to deplete

this doubly excited density. It could also be that these energy states are transitioning

to other states in transitions that cannot be captured with this setup. There exists

transitions whose photons have wavelengths outside the visible and it could be in
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those transitions that these states are becoming depleted. The 52D to 62P transition

would occur at approximately 5 µm. These longer transitions could account for the

incosistencies in the model and serve as a mechanism other than ionization that could

correct the model. The following chapter will suggest ways to better the model and

suggest experiments that may provide evidence for each mechanism.
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V. Future Work and Conclusion

Emissions from the higher lying states of atomic rubidium after pulsed excitation

of the 52P 3
2

state in the presence of helium has been used to study energy pooling

an ionization. For rubidium densities below n = 2.06 ∗ 1014cm−3 emission is limited

to the D1 and D2 lines arising from the 52P 3
2

and the collisionally populated 52P 1
2

states. At higher alkali density populations n < 3.31 ∗ 1015cm−3, emission from 13

lines have been observed for peak pump intensities of 1.5MW/cm2.

Population in the 52D and 62P appears to arise from energy pooling and persists

for helium pressures as high as 940 Torr. At higher alkali densities and strongly

bleached conditions, the emissions from all of the major energy states is strongly

trapped. The spontaneous emission rates from the 52D and 62P manifolds are reduced

by around 10, and the same rate of the D1 transition is reduced by a factor of nearly

100.

Population in the states above 52D decrease significantly with added helium and

are fully quenched at 500 Torr, much lower than the buffer gas pressures needed to

efficiently operate a DPAL. The dependence of helium pressure on emmision intensity

is complicated by a very slow diffusion rate (≈ 1 hour). These highly excited states

are likely produced by ion recombination.

No emission from ionic rubidiumhas been observed even at pump intensities of

1.5MW/cm2 The first exctied stated of the rubidium ion, Rb+, is at 16.53 eV above

the ground ion state (14), requireing high electron kinetic energy which appears to

not be achieved when pumping the D2 transition. However, an emission line from the

rubidium ion’s 5P state can be observed when pumping the two photon 52S 1
2
→ 52D 3

2

transition.

Efficient DPAL operation with surrogate pulsed pump lasers have been demon-

strated at pump intensities exceeding 10MW/cm2, several orders of magnitude greater
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than achievable with current diode laser technology. Three pump photons are required

to reach ionization. The DPAL system depends on the first photon exciting to the

52P 3
2

state. The mechanism for excitation to a higher excited intermediate state is

unclear but slow. Once in a highly excited state another pump photon can readily

ionize the alkali. The slow step to produce the higher excited intermediate appears

to limit ionproduction during the short pulse duration of the current experiments.

Several additional experimetns are required to continue this study and explain

the effects of ionization on DPAL performance. First, this data should be recollected

taking into consideration diffusivity and laser power degradation. Issues with the

radial dependency in the photoluminecence can be sovled by careful observation of

the pump laser power or implementation of pinhole to limit the field of view should

clear up some of the issues; although too much blocked intensity could result in a

drastic decrease in received signal.

Waiting for the cell to equilibrate after the injection of helium is the obvious solu-

tion for the diffusivity problem. Additionally, it would be possible to experimentally

monitor the rubidium density in the cell immeadiately before data collection. Using

the absorption spectrum of a broadband light source along prominent transition lines,

the total rubidium density can be derived. These issues could call into question the

validity of the quantitative results presented here. Moreover, this investigation may

result in a roll off of intensity in the D1 transition at higher pressures; it must be

certain that this roll off is not due to fluctuations in the apparent number density.

These mistakes in experimental methodology are not the only unresolved issues.

Radiation trapping is a much bigger issue. The functional form chosen seems to

work, but it is surely not the only function that could fit. The biggest cause for error

in this could be the amplitude of this trapping. The trapping factor used in this

analysis is seemingly independent of buffer gas pressure. Intuitively, this does not
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make sense, as the broadening of line shape should have some effect on the radiation

trapping observed. To get a more accurate functional form for trapping, collection

of line intensity as cell temperature is increased at many different pressures should

be undertaken. With multiple graphs like Fig. 8, a more complete picture of the

trapping can be created. A more rigorous anayltic solution may be instead obtained

to fit to the data. The Holstein equation governs the trapping mechanism (18),

and has eigenvalue solutions that go like the sums of exponentials. A more correct

functional form for the trapping observed will allow for a more accurate description.

Another useful piece missing from this study is the D2 transition intensity. The-

oretically, it can be used as a comparison tool to find absolute densities for these

upper states. The absolute density of this state can be easily derived using the total

rubidium density, assuming the transition is bleached, and its ratio with the other

transitions could produce absolute densities for those states as well. Furthermore,

this ratio will strip away some of the uncertainty due to diffusivity and laser degrada-

tion. Data was collected for this D2 transition, in Fig. 4 for instance, but radiation

trapping makes it useless at this point. Some of this intensity is coming from scat-

tered light from the pump beam, but there should be some being re-emitted by the

rubidium. The trapping makes it impossible to decouple the scattered pump intensity

from that being emitted from electron relaxing to the ground state. Fig. 17 shows

the comparison of the pump laser on and off resonance. The pump intensity of the

laser on resonance is much less than the pump intensity off resonance. Radiation

trapping causes this severe decrease. It is unknown the degree to which the trapping

is suppressing the intensity, but there is no reasonable upper bound to this inflation.

The experimental set up used also caused limitations in the experiments com-

pleted. The glass cell made it dangerous to heat the cell much past 235◦C and

impossible to inject more than around 1.5 atm of helium. It seems that with higher
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Figure 17. Effect of trapping on scattered pump beam. This large increase when
moving off resonance indicates that trapping plays a huge role. But because the degree
of trapping is unknown, it is very difficult to decouple the two phenomenon.

cell temperature, and rubdium density, the minor transitions are much more intense

and it would be possible to characterize their behaviors with a model similar to the

ones presented previously. It is also important to ramp up the helium pressure. Ex-

isting pure helium DPAL systems require helium pressures of 4 atms to run (31), and

the more rubidium in the cell, the more helium required to maximize the D1 output.

It is essential that those high density and pressures are investigated.

It also would be wise to explore transitions that fluoresce outside the visible spec-

trum. Photons with longer wavelengths have been observed in rubidium–lasing be-

tween between the 52D and 62P has a wavelength around 5 microns, for instance

(14). The intensity of these lines may provide more insight to the mechanisms sur-

rounding ionization and recombination. These include tranistions in the Near IR and

IR and some that would come from transitions in the rubidium ion. This experiment

was limited by the detector system used, it was only able to capture photons with

wavelengths under 900 nm. A new spectrometer and camera system would allow for
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the observation of these new transitions.

The last experiment that will be discussed is the change from a pulsed pump laser

to CW one. It has been shown that the roll off of output power occurs much sooner

when using a continuous pump beam (5). The time between pulses may be all that is

needed to relax enough rubidium from excited states to cause a substantial decrease

in the effects of ionization. If the 52P manifold is continuously bleached, it may cause

an increase in the energy pooling that seems to cause the ionization to the point of

significantly hurting the output intensity of the D1 transition.

With the data collected thus far, few definite answers can be made. It is certain

that the model presented needs an additional piece to fix the over estimation of

the data. It is also certain that at low buffer gas pressures, highly excited states

are becoming populated, and it could be that photoionization is responsible for its

creation. But the concentration in these states fall to 0 when the moderate amounts

of buffer gas is added. Radiation trapping plays a major role that requires much more

investigation. With a more accurate description of trapping effect, a more accurate

model can be created and an ionization rate could be derived for both pulsed and

CW DPAL systems, ultimately settling this heated debate.
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Appendix A. Calibration

Callibration of the Acton Spectrometer was completed using both a broad spec-

trum quartz halogen lamp, Oriel Instruments model number 5-123, and a blackbody

emitter, Electo-Oprical Industries LS1350-100. For the halogen lamp, a spectral ir-

radiance is quoted by the manufacturer for a distance of 50 cm from the lamp. The

equation is given as:

I = λ−5 ∗ e42.98953−
4583.98173

λ
+ 211819

λ2
− 1.4232551E8

λ3
+ 3.847842E10

λ4
− 3.8965903E12

λ5 ,

where I is irradiance in W/m2nm, λ is the wavelength in nm, h is Plank’s constant,

and c is the speed of light. Taking this number and multiplying by the detector area

and exposure time, and the the energy of a photon, λ
hc

, gives the number of photons

at each wavelength incident onto the detector. The detectivity of the spectrometer is

found by dividing this photon density by the counts recorded by the spectrometer.

A secondary calibration measurement was done using a blackbody spectrum. The

blackbody was turned on approximately four hours before testing to allow for equi-

libration to occur, well more than the time estimated in the instructions. It was set

to 1,350 K to allow for as much intensity in the shorter wavelengths as possible. The

spectrometer has two grating options, one maximaized for 750 nm and the other for

300 nm. Moving the fiber closer to the blackbody at the grating switch was done

to again maximize the output in the blue. The detector was held at a distance of

20.9 cm from the blackbody when calibrating the 750 nm grating and 6.6 cm for the

other. At both of these distances, it can be assumed that the light is emitted from

a Lambertian disk. The spectral irradiance emitted from a Lambertian disk is given

by:

I =
2hc2

λ5
1

e
hc
λkT − 1

π
l2

l2 +R2
.

43



www.manaraa.com

Here T is the temperature in Kelvin, R is the distance from the disk, l is the distance

from the center, both in meters, and k is Boltzmann’s constant (7). From here it

is the same analysis as that for the halogen lamp. Fig. 18 shows the spectroscopic

detectivity found using both methods. The two graphs are normalized to their value at

780 nm. An absolute calibration is not needed as only trends in the data are analyzed.

The normalized graphs show a very good agreement for our relative calibration. The

changing of the grating accounts for the large discontinuity around 575 nm. Even

with the attempt to maximize the intensity of the blackbody at all wavelengths, the

spectrum emitted in the near UV portion was very small, which can account for the

incongruities between the quartz halogen calibration and this one.

Figure 18. The black points are those from the halogen lamp, the blue points are that
of the blackbody, and the red are the theoretical quantum efficiency calculated from
the manufacturers. The difference between multiple sources of calibration grow in the
shorter wavelengths due to the small signal of the blackbody in this spectral region.

The final check of the detectivity measurements was done by finding the manufac-

turers quoted specifications for the quantum efficiency of the Princeton Instruments

CCD Camera and the reflectivity efficiency of the two gratings. The plots of these
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values were taken from Princeton Instruments and Acton’s websites, respectively. A

MATLAB digitizer was used to pull numbers off of the plots, so this only serves as

an estimate of the probable detector response. They, can be found on Fig 18, and are

in good agreement with the rest of the data.
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Appendix B. Thermal Equilibrium

To motivate the decision to investigate the steady state solution of the rate equa-

tions, an appeal to thermodynamics is implemented. If the kinetics were neglected

for just a moment, if the rubidium was able to reach thermodynamic equilibrium in

the cell then it should be obvious why a steady state solution is justified. If ther-

modynamic equilibrium is reached, the rubidium density as a function of energy is

constant and therefore the density of a given energy level is as well. A Boltzmann

distrobution is expected once equilibrium is reached. The functional form of a Boltz-

mann distribution looks like n(Ei) ∝ gie
Ei
kT , where n(Ei) is the density of rubidium at

some energy level Ei, gi is the degeneracy of of that energy level, k is the Boltzmann

constant. T is not the temperature of the cell, it is instead an apparent electronic

temperature. It does not have any physical meaning, except that it describes how

energetic the electrons really are.

To investigate the possibility of thermal equilibrium, a similar set up was used as

described in the Chapter III. The primary difference was that instead of a homemade

cell, a Triad rubidium cell was used. To ensure the findings were valid over the entire

range of pressures, this investigation was done at vacuum. Collisions tend to drive

systems toward equilibrium, so if equilibrium is found at vacuum, then as you increase

buffer gas pressure—and therefore collisional frequency—thermodynamic equilibrium

will be reached faster.

Radiation trapping must be considered again here, and it will be approached a bit

differently in this case. Molisch and Oehry introduce an escape factor in (18) that is

a function solely of absorbence. This escape factor acts a probability that a photon

emitted at the center of the cell is able to reach to cell wall and escape to the detector.

There are a few reasons this much simpler escape factor approach is not used in the

earlier work. Primarily, the assumptions made to derive the escape factor may not
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be fully valid in the experiment. It will definitely give the general picture of radiation

trapping as it is occurring, enough to investigate the thermodynamic equilibrium, but

to the escape factor approach any further would be leaving out much of the physics.

For instance, the functional form for the escape factor assumes a Doppler broadened

line. This is almost assured in buffer pressures near zero, but quickly becomes false, as

helium is increased. The function form of the trapping factor for a Doppler broadened

line, in a infinite cylinder, with high opacity is given as:

η̄ ≈ 2

σnl

√
ln (σnl)

π
(25)

Here σ is the absorption cross section of a transition, n is the rubidium density in

the lower state of the transition, and l is radius of the cell (18). The only assumption

needed to justify the infinite cylinder simplification is that the cylinder length is longer

than its diameter, which is the case in this set-up. The only assumption needed to

justify the high opacity remark is for σnl to be much greater than one, which it most

assuredly is in all cases.

The only transitions that were assumed to be undergoing trapping were ones that

ended in the ground state. While it is true that in the volume illuminated by the

pump beam the densities of the some excited states, specifically the 5P manifold,

are comparable to that of the ground state; outside of that relatively small region

of the total cell volume the excited density is negligible to that of the ground state

rubidium. Because of this, if a photon from a transition that does not terminate on

the ground state is able to escape from the beam radius—which is much smaller than

the cell radius—it will most likely reach the cell wall, and so it will be said that the

escape factor for these transitions is approximately 1.

It has been stated previously that ni ∝ Ii
DiξiAi

, and using this with Eq. 25 it can
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be concluded that

ln
Ii

DiξiAigi
∝ −Ei

kT
(26)

If the cell can be believed to be in thermodynamic equilibrium then the electronic

temperature can be extracted from the line comparing the energy levels of the upper

state and the natural log of the density in that excited state. The results from this

experiment done at 235◦C are displayed in Fig. 19. In this graph, the open circles

are the values of the density before trapping and the solid dots are the values after

the escape factor was included. The simplistic form for trapping makes the linear

regression much stronger.

Figure 19. Sample determination of electronic temperature, at 235◦C. The green
circles represent as it was produced by the experiment. The blue dots are the values
after a naive trapping approach was concluded. The red line is the line fit through the
data, whose slope is a function of the electronic temperature. The cyan dashed line
represents the error bound for the fit. They were found using the regression statistics
and represent a 95% confidence interval.

The electronic temperature’s dependence on the true cell temperature is shown in

Fig. 20. The rubidium in the cell reaches the same electronic temperature regardless

of cell temperature. This seems to be counter intuitive but it is not. The cell tem-

perature will increase the average speed of a rubidium atom but will do nothing to
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increase the energy the electron has. As cell temperature is increased, the population

in each energy level tends to increase, but the trend of the Boltzmann plot stayed the

same.

Figure 20. Electronic temperature at increasing cell temperature. The error bars
come from the regression statistics and represent a 95% confidence interval.

This constant electronic temperature derived implies that the cell is able to reach

this thermodynamic equilibrium between laser pulses. If it was not able to, some

rubidium density dependency would be expected. So this Boltzmann approach has

shown that the investigation of the steady state solution is a valid way to probe

the data. Furthermore, this data shows the necessity of including a correction for

radiation trapping for these experiments. Even a overly simplified trapping factor

increased the correlation of the data significantly, so it must be carefully considered.
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